

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Semester: 5 th												
Paper code: AIDS301/AIML301									L	Т/І	C	redits
Subject: Operating Systems									4	0		4
Marking Scheme:												
1.	1. Teachers Continuous Evaluation: As per university examination norms from time to time											
2.	End Te	rm Theo	ry Exam	ination:	As per u	niversity	y examin	ation no	orms fro	m time t	o time	
INSTRUCTIONS TO PAPER SETTERS: Waximum Warks: As per university norms												
1. Th	There should be 9 questions in the end term examination question paper.											
2. Qu	uestion No. 1 should be compulsory and cover the entire syllabus. This question should have											
Ob	objective or short answer type questions.											
3. Ap	Apart from Question No. 1, the rest of the paper shall consist of four units as per the syllabus.											
EV fre	from each unit											
4. The questions are to be framed keeping in view the learning outcomes of course/paper. The												
standard/ level of the guestions to be asked should be at the level of the prescribed textbooks												
5. The requirement of (scientific) calculators/ log-tables/ data-tables may be specified if required.												
Course Objectives:												
1.	To understand the basic concepts and functions of operating systems.											
2.	To use different process scheduling algorithms and synchronization techniques to achieve											
	better performance of a computer system.											
3.	To understand Processes, Threads and Deadlocks and Memory Management algorithms of											
1	operating systems.											
4.	to analyze the several operating systems and their utilities such Linux, Unix, Window to											
Course Outcomes:												
cour	Under	stand fu	Indamen	ital one	rating s	vstem a	hstracti	ons suc	h as nr	ncesses	thread	s files
CO1	semaphores. IPC abstractions, shared memory regions, etc.											
<u> </u>	Apply process scheduling and memory management concepts.											
СОЗ	Analyze the operating system's resource management techniques, deadlock management											
	techniques, memory management techniques.											
CO4	Design device drivers and multi-threading libraries for a tiny OS and develop application											
Course Outcomes (CO) to Programme Outcomes (PO)												
Manning (Scale 1. Low 2. Medium 3. High												
co/	PO01	PO02	PO03	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12
PO												
CO1	1	-	-	-	-	-	-	-	1	1	1	-
CO2	3	1	-	-	-	-	-	-	1	1	1	-
CO3	2	2	-	1	1	-	-	-	2	1	1	1
CO4	2	1	2	1	1	-	1	-	2	1	2	1

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Course Overview:

This course covers the fundamentals of operating systems, mechanisms, and their implementations. The core of the course contains concurrent programming (threads and synchronization), inter process communication, process scheduling, memory management, input output devices and organization.

Unit I

Introduction: Operating system and function, Evolution of operating system, Batch, Interactive, Time Sharing and Real Time System, System protection. Operating System Structure: System Components, System structure, Operating System Services.

CPU Scheduling: Scheduling Concept, process scheduling strategies- First-Come, First-Served (FCFS) Scheduling, Shortest-Job-Next (SJN) Scheduling, Priority Scheduling, Shortest Remaining Time, Round Robin (RR) Scheduling, Multiple-Level Queues Scheduling, Performance Criteria of Scheduling Algorithm, Evolution, Multiprocessor Scheduling.

Unit II

Concurrent Processes: Process concept, Principle of Concurrency, Producer Consumer Problem, Critical Section problem, Semaphores, Binary and counting semaphores, P() and V() operations, Classical problems in Concurrency, Inter Process Communication, Process Generation, Process Scheduling.

Deadlocks: examples of deadlock, resource concepts, necessary conditions for deadlock, deadlock solution, deadlock prevention, deadlock avoidance with Bankers algorithms, deadlock detection, deadlock recovery.

Unit III

Memory Organization & Management: Memory Organization, Memory Hierarchy, Memory Management Strategies, Contiguous versus non- Contiguous memory allocation, Partition Management Techniques, Logical versus Physical Address space, swapping, Paging, Segmentation, Segmentation with Paging Virtual Memory: Demand Paging, Page Replacement, Page-replacement Algorithms, Performance of Demand Paging, Thrashing, Demand Segmentation, and Overlay Concepts.

Unit IV

I/O Device and the organization: I/O Device and the organization of the I/O function, I/O Buffering, Disk I/O, Disk Scheduling Algorithms, File system: File Concepts, attributes, operations, File organization and Access mechanism, disk space allocation methods, Directory structure, free disk space management, File sharing, Implementation issues. Case studies: Unix system, Windows XP.

Textbooks:

- 1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Concepts", Wiley, 9th Edition
- 2. Tannenbaum, "Morden Operating Systems", Pearson, 4th Edition, 2014

[10]

[10]

[10]

[10]

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Reference Books:

- 1. William Stallings, "Operating Systems –Internals and Design Principles", 8/E, Pearson Publications, 2014.
- 2. Dietel, "An introduction to operating system", Addison Wesley, 1983